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Crossover time of diffusion-limited reactions on a tubular lattice

Ji Li
H. M. Randall Laboratory of Physics, The University of Michigan, Ann Arbor, Michigan 48109-1120

~Received 13 February 1997!

We studied the diffusion-limited reactionsA1A→0 andA1B→0 and the number of distinct sites visited
by a random walker on ad-dimensional tubular lattice: square lattice of sizesL3Wd21 with L@W. We are
interested in the crossover time at which the system changes its behavior from that in high dimensions to that
in one dimension. We analytically solved the random-walk problem on the tubular lattice. Our theoretical result
agrees with the simulation and thus explains the anomalous scaling of the crossover time for the random-walk
problem. We also understood, using the concept of depletion zone, the scaling behavior of the crossover time
for the reactionA1A→0 on the tubular lattice. Our measurement and data collapse showed that the crossover
time for the reactionA1B→0 scales asW2 for largeW. The discrepancy between our result and that of others
is also discussed.@S1063-651X~97!07006-2#

PACS number~s!: 05.40.1j
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I. INTRODUCTION

The diffusion-limited reaction of particles on a hyperd
mensional surface is a problem of fundamental interest
practical importance@1–6#. Simulation, theory, and experi
ments show that in low dimensions the diffusion-limited r
action no longer obeys the classical reaction rule. This is
to the effect of local concentration fluctuation in low dime
sions. For bimolecular elementary reactions of the fo
A1A→0 it is well known that the critical dimension is 2
below which the concentration of reactantA decays, asymp-
totically, ast2d/2. This nonclassical behavior is caused by t
anomalously large and continuously growing depletion zo
that are mesoscopic domains depleted of reactants@2,3#. For
elementary reactions of the formA1B→0, the critical di-
mension is 4 and below that concentration of reactant dec
ast2d/4. An even more dramatic nonclassical effect has b
shown for the reactionA1B→0 below dimension 4: Self-
segregation betweenA andB appears for an initially random
system@4–6#.

It can be seen that the nonclassical behavior is most
vious in one dimension. While strictly one-dimensional rea
tion systems are difficult to realize, it is much easier
achieve systems that are effectively one dimension, for
ample, capillaries, pores, or tubules. Recently Lin, Kop
man, and Argyrakis@7# performed Monte Carlo simulation
of random-walk-based exploration volumes and bimolecu
A1A→0 andA1B→0 reactions on a tubular~they called it
baguettelike! lattice. Thed-dimensional tubular lattice has a
infinitely long geometry in one~longitudinal! direction and
finite widthW in the remainingd21 ~transverse! directions.
They investigated the crossover time of the system fr
high- ~two- or three-! dimensional behavior to one
dimensional behavior and its scaling laws with respect to
tube widthW. They found that these dimensional crossov
times deviate significantly from a mean-square displacem
law and are specific to both dimensionality and reaction ty
Instead of being an expected power of 2, the exponents ra
between 1 and 4.

In this paper we analytically solved the random-wa
problem on the tubular lattice. Using a simple intuitive arg
551063-651X/97/55~6!/6646~5!/$10.00
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ment, we also obtained the same result. Our theoretical re
agrees with the simulation and thus successfully explains
crossover time of the random-walk problem. Therefore,
also understood, using the concept of depletion zone,
scaling behavior of the crossover time for the react
A1A→0 on the tubular lattice. Our measurement and d
collapse show that the crossover time for the react
A1B→0 scales asW2 for largeW. The discrepancy be
tween the result of Linet al. and ours is also analyzed.

In Sec. II we define the model and specify the parame
and boundary conditions. In Sec. III we apply an intuiti
argument to obtain the number of distinct sites visited b
random walker in a tubular geometry. Using the analyti
results, we are able to explain the abnormal scaling of
crossover time for the random-walk problem and t
A1A→0 reaction. In Sec. IV we employ different method
to measure the scaling exponent of the crossover time for
reactionA1B→0. Diffusion-reaction equations are used
explain the result. Finally, in Sec. V we discuss the diffe
ence between the result of Linet al.and ours. In the Appen-
dixes we give the rigorous derivation of the formula obtain
in Sec. III.

II. MODEL

The method of simulation we employed is essentially
same as that of Linet al. @7#. For clarity and consistency we
briefly reiterate the procedure as follows: A population
reacting particles is initially deposited on a tubular lattic
The linear sizeL of the lattice in one direction~longitudinal!
is much larger than that (W) of the others~transverse!. Par-
ticles move by hopping on the lattice and react when th
encounter each other. For theA1A→0 type reaction, if two
A particles attempt to occupy the same lattice site they a
hilate each other. TheA1B→0 type reaction occurs whe
anA and aB particle attempt to occupy the same lattice si
No reaction happens if two same-species particles ‘‘collid
and therefore each lattice site can hold at most one part
Periodic boundary conditions are applied in both cases
the densityrA(t) of reactantA is kept track of. For the
random-walk problem one random walker is released at t
6646 © 1997 The American Physical Society
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55 6647CROSSOVER TIME OF DIFFUSION-LIMITED . . .
t50 from the origin andSt , the number of distinct sites
visited by the walker, is recorded. Here the linear size alo
the longitudinal direction is infinite and periodic bounda
conditions are applied along the transverse directions. In
three cases we are interested in the crossover time, defin
the point at which the system changes its behavior from
in two or three dimensions to that in one dimension.

III. CROSSOVER TIME OF St

Because of the translational invariance symmetry in
random-walk problem we can solve, using the genera
function technique@8#, the asymptotic behavior ofSt on the
tubular lattice. We postpone the rigorous derivation until
Appendixes and instead present a much simpler poin
view here, which can be applied to the case of perio
boundary conditions along the transverse directions as
as that of reflective boundary conditions.

We start from the well-known@8# fact that in one-
dimensional free space the number of distinct sites visited
a random walker as a function of timet is, asymptotically,

St;sA8t

p
, ~1!

where s is the single-step dispersion. The walker spen
approximatelyAt time ~we call it ‘‘idle’’ time ! visiting two
consequentnewly visited sites. In the tubular lattice, if w
just concentrate on the longitudinal direction, say, by p
jecting the d-dimensional motion into that direction, th
number of distinctlayers visited by the walker issA8t/p,
with s251/2d11/2d51/d. During the ‘‘idle time’’ the
walker will just visit ~almost! all the sites on the transvers
constrained hyperplanes~layers! because of the finite size o
the hyperplanes. This can also be confirmed by simula
results. Therefore, the number of distinctsitesvisited by a
random walker on the tube is, asymptotically,

St;sA8t

p
Wd215A 8t

pd
Wd21, ~2!

whereW is the linear size of the tubular lattice along th
transverse directions andd the embedding dimension.

It is also well known@8# that in two- or three-dimensiona
free space the numberSt of distinct sites visited by a random
walker as a function of timet is, asymptotically,

St;H t

ln~ t !
for d52

t for d53.

~3!

Therefore, according to Eqs.~2! and ~3! the crossover time
tc from (d53)-dimensional behavior to (d51)-
dimensional behavior can be obtained by solving the eq
tion tc;AtcW2, which gives the scaling relationship be
tweentc andW,

tc;W4. ~4!

The scaling power 4 agrees with the simulation result
tained in @7#. Similarly, the crossover timetc from
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(d52)-dimensional behavior to (d51)-dimensional behav-
ior is just the solution oftc / lntc;AtcW or

Atc
lnAtc

;W, ~5!

which has no simple global scaling behavior. The scal
exponent (2.660.4! observed in@7# is the property of the
local solution. Furthermore, for largeW and thus largetc ,
lntc can be treated as constant compared totc and therefore
tc approaches the classical scaling relationshiptc;W2.

IV. CROSSOVER TIME OF A1A˜0 AND A1B˜0

In diffusion-reaction systems, such asA1A→0 or
A1B→0, one is usually interested in the density of the
actantsrA ~and/orrB). Thus, in such systems the crossov
time can be defined as the point at which the density chan
its behavior from that in two or three dimensions to that
one dimension. Had the reaction process behaved classic
the density, sayrA , would have followed the asymptoti
form rA;t21, which is independent of the spatial dimensio
the system embedded in and therefore there would have
no crossover. For the reactionA1A→0 in free space, the
concentration decay rate can be understood using the con
of depletion zone@1,9#: As a first-order approximation, in the
area swept by a surviving particle up to timet, there is only
one particle, i.e., the surviving particle. This argument giv
rA(t);1/St , whererA(t) is the density of particleA at time
t. Motivated by the result obtained in Sec. III, one wou
assume that the densityrA of the reaction system
A1A→0 on the tubular lattice follows, asymptotically,

rA
21;Wbt1/2 ~6!

and the exponentb5d21 as in the random-walk problem
This argument explains the same scaling exponent of
crossover time for both the random-walk problem and
reactionA1A→0 @7#.

Similarly, one would expect that the temporal behavior
rA , for the reactionA1B→0 andd,4, on the tubular lat-
tice follows ~assume initiallyrA5rB)

rA
21;H td/4 for small t

Wbt1/4 for large t.
~7!

The rate rA
21;td/4 is the nonclassical~Ovchinnikov-

Zeldovich! asymptotic behavior@4–6# of the reaction
A1B→0 in d-dimensional free space and therefore the ea
time behavior in Eq.~7! is true only in the sense of larg
enough widthW. In real simulations~usuallyW cannot be
very large! a finite-size effect sets in before one can see
d-dimensional Ovchinnikov-Zeldovich raterA

21;td/4. In real
simulations there is also another finite-size effect, nam
along the longitudinal direction. Since the size along the lo
gitudinal direction is set large enough in the simulation, t
one-dimensional behavior can be observed before the lo
tudinal finite size has an effect.

The crossover of the reactionA1B→0 occurs at the
point
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6648 55JI LI
tc
d/4;Wbtc

1/4, ~8!

which turns out to betc;Wa, where

a5
4b

d21
. ~9!

For the reactionA1B→0 the exponentb cannot be ob-
tained by the previous depletion zone argument beca
there is no reaction between same species particles. We
sured the power exponentb from the simulation data, which
turns out to beb;0.5 for d52 ~Fig. 1! and b;1 for
d53 ~Fig. 2!, respectively. Therefore, we predict a univers
scaling resulttc;W2 for largeW. Furthermore, from Eq.~7!
we can propose a scaling theory@10# of rA for the reaction
A1B→0:

rA
21;td/4f ~ t/Wa!, ~10!

FIG. 1. Concentrationr(t)212r0
21 for the reactionA1B→0

on d52 tubular lattices. The initial concentration isr050.4. The
width W is, from bottom to top, 2, 4, 8, 16, 32, and 6
L5100 000 and the run is equal to 15.

FIG. 2. Concentrationr(t)212r0
21 for the reactionA1B→0

on d53 tubular lattices. The initial concentration isr050.4. The
widthW is, from bottom to top, 3, 6, 9, 12, 15, 18, 21, 24, 27, a
30. L510 000 and the run is equal to 15.
se
ea-

l

where f (x);const whenx is small andf (x);x2b/a when
x is large. Data collapse ford52 ~Fig. 3! andd53 ~Fig. 4!
verifies the above scaling conjecture. The failure of data c
lapse at early times is due to the existence of the cla
region at the very beginning of the reaction.

The behavior oftc can be understood by studying th
spatial correlation function of the concentration differen

g(rW,t)[ 1
2 @rA(rW,t)2rB(rW,t)#. It can be easily shown tha

r(rW,t) obeys the diffusion equation@11#. Thus, for random
initial conditions@12# the spatial correlation ofr evolves as

^g~rW1 ,t !g~rW2 ,t !&;
1

2~8pDt !d/2
e2~rW12rW2!2/4Dt. ~11!

The above formula implies that the size of the se
segregation zone grows ast1/2. We argue that the crossove
time tc on the tubular lattice happens when the se
segregation size reaches the widthW.

FIG. 3. Data collapse of concentration for the reacti
A1B→0 on d52 tubular lattices. The initial concentration i
r050.4. The widthW is from 2 to 128. The parameters are d
scribed in the caption of Fig. 1.

FIG. 4. Data collapse of concentration for the reacti
A1B→0 ond53 tubular lattices. The parameters are described
the caption of Fig. 2.
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The discrepancy between our result and that in@7# comes
from the different method employed to determine the cro
over timetc . In @7# the crossover timetc is obtained for the
A1B→0 process by drawing ‘‘best’’ linear fits to both th
early timeand the asymptotic time. However, for smallW
the early time decay of reactants weakly depends onW. This
transient behavior is due to the finite size of the system
Ref. @7# the survival probabilityrc /r0 vsW is plotted, where
rc is the density ofA particles remaining on the lattice at th
crossover timetc . Compared with another survival probab
ity r08/r0, namely, the normalized densities attc8 , wheretc8 is
the crossover time to the Ovchinnikov-Zeldovich time r
gime in free space, it is found that, forW<10, the finite-size
effect sets in before one can observe the Ovchinnik
Zeldovich behavior. This can also be confirmed by the d
collapse: The flat portion of the scaling functionf (x) ap-
pears only whenW is large enough.

Therefore, our scaling exponent is different from that
@7# because of the different definition of crossover time.
@7# the crossover time is actually the time at which the s
tem enters the one-dimensional Ovchinnikov-Zeldovich
havior regime. For largeW this definition approaches ours
However, the validity of scaling formula~7! in the long time
regime still holds and actually can be used@13# to interpret
the anomalous scaling exponent in@7# if the early~for small
W) scaling behavior is carefully measured.

In three-dimensional free space it is difficult to obser
the Ovchinnikov-Zeldovich decayr21;t3/4 for reaction
A1B. Recent study@14# shows that periodic boundary con
ditions act as effective convection currents, especially
three dimensions, and thus hinder the system’s transitio
the Ovchinnikov-Zeldovich regime. Using instead reflecti
boundary conditions improves this situation. However, in o
method it can be seen that the measurement of the cross
time does not involve the high-dimensional Ovchinniko
Zeldovich regime. We also tried the reflective boundary c
dition along theW direction and obtained a similar result.

V. CONCLUSIONS AND SUMMARY

In summary, we analytically solved the random-wa
problem on tubular lattices and thus obtained an underst
ing of the scaling behavior of the crossover time for t
reaction A1A→0. Applying data collapse technique w
found, for largeW, a normal scaling exponent of the cros
over time for the reactionA1B→0 on tubular lattices. The
discrepancy of our result with those of others is analyzed
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APPENDIX A: HOW TO SOLVE Sn IN FREE SPACE

In this section we briefly review@8,15# the technique to
obtainSn , the number of distinct sites visited by a rando
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walker in free space. Let us first definepn( jW), the probability
that the walker reaches sitejW at stepn, and f n( jW), the prob-
ability that the walker reaches sitejW at stepn for the first
time.

From the translational invariance property of the fr
space we have

pn~ jW !5dn,0d jW,0W1 (
k51

n

f k~ jW j !pn2k~0W !. ~A1!

Furthermore, we introduce generating functions

p~ jW;z!5 (
n50

`

pn~ jW !zn, ~A2!

f ~ jW;z!5 (
n50

`

f n~ jW !zn, ~A3!

with f 0( jW)50 implied, and it is easy to see that

f ~ jW;z!5
p~ jW;z!

p~0W ;z!
2

1

p~0W ;z!
d jW,0W . ~A4!

The probability that the walker reaches anewsite at step
n, denoted asDn , is

Dn5(
jW
f n~ jW ! ~A5!

and thereforeSn , the number of distinct sites visited by th
walker, can be expressed as

Sn5 (
k51

n

Dk .

The corresponding generating functions ofDn andSn satisfy

D~z!5
z

~12z!p~0W ;z!

and

S~z!5
z

~12z!2p~0W ;z!
. ~A6!

The asymptotic behavior ofSn can be related, via the Taub
erian theorem@16#, to the singularity ofS(z) at z51.

APPENDIX B: HOW TO SOLVE Sn
IN A TUBULAR GEOMETRY

Next we are going to prove formula~2! in this paper.
Noticing that thed-dimensional tubular lattice is infinitely
long in one (x) direction and of widthW in the remaining
directions (yW ), we definepn(x,yW ) as the probability that the
walker reaches site (x,yW ) at step n. Here yW is in
(d21)-dimensional subspace where periodic conditio
with periodW are implied. Since translational invariance st
holds in this tubular geometry, we have
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pn11~x,yW !5 (
x8,$y8W %

p~x2x8,yW2y8W !pn~x8,yW !, ~B1!

wherep(x,yW ) is the single-step jump probability andx runs
over all the integer numbers while$y8W % runs over all the
lattice sites in ad21 cube of widthW. A Fourier transform
can be used to solvepn(x,yW ):

p̂~u,sW ![ (
x,$yW %

p~x,yW !ei ~ux12psW•yW /W! ~B2!

or

p~x,yW ![
1

Wd21(
x,$yW %

1

2pE2p

p

p̂~u,sW !e2 i ~ux12psW•yW /W!. ~B3!

It can be easily shown that

p̂n~u,sW !5@ p̂~u,sW !#n ~B4!

if the random walker is released from the origin. T
p̂(u,sW) for our tubular geometry is

p̂~u,sW !5
1

d
@cosu1cos~2ps1 /W!1•••1cos~2psd21 /W!#.

~B5!
ys

alk
The relationship~A6! betweenS(z) andp(x,yW ;z) still holds
for the tubular geometry and

p~0,0W ;z!5
1

Wd21(
$sW%

E
2p

p 1

12zp̂~u,sW !

du

2p
.

Singularity happens only whens15s25•••5sd2150.
Therefore,

p~0,0W ;z→0!5
1

Wd21E
2p

p 1

12z~cosu1d21!/d

du

2p
~B6!

;
1

Wd21E
2`

` 1

~12z1zu2/2d!

du

2p
~B7!

5
Ad
Wd21E

2`

` 1

~12z1zu2/2!

du

2p
. ~B8!

The integrand in the identity~B8! can be recognized as tha
of the random walk in one-dimensional free space and t
we get

Sn;
Wd21

Ad
A8n

p
. ~B9!
rg,
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