PHYSICAL REVIEW E VOLUME 55, NUMBER 6 JUNE 1997

Crossover time of diffusion-limited reactions on a tubular lattice
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(Received 13 February 1997

We studied the diffusion-limited reactiods+ A—0 andA+B—0 and the number of distinct sites visited
by a random walker on d-dimensional tubular lattice: square lattice of sizesW9™! with L>W. We are
interested in the crossover time at which the system changes its behavior from that in high dimensions to that
in one dimension. We analytically solved the random-walk problem on the tubular lattice. Our theoretical result
agrees with the simulation and thus explains the anomalous scaling of the crossover time for the random-walk
problem. We also understood, using the concept of depletion zone, the scaling behavior of the crossover time
for the reactiol’A+ A—0 on the tubular lattice. Our measurement and data collapse showed that the crossover
time for the reactior\+B— 0 scales a¥V? for largeW. The discrepancy between our result and that of others
is also discussedS1063-651X97)07006-3

PACS numbes): 05.40:+j

I. INTRODUCTION ment, we also obtained the same result. Our theoretical result
agrees with the simulation and thus successfully explains the
The diffusion-limited reaction of particles on a hyperdi- crossover time of the random-walk problem. Therefore, we
mensional surface is a problem of fundamental interest andlso understood, using the concept of depletion zone, the
practical importanc¢l1-6]. Simulation, theory, and experi- scaling behavior of the crossover time for the reaction
ments show that in low dimensions the diffusion-limited re-A+A—0 on the tubular lattice. Our measurement and data
action no longer obeys the classical reaction rule. This is dueollapse show that the crossover time for the reaction
to the effect of local concentration fluctuation in low dimen- A+ B—0 scales a3\? for large W. The discrepancy be-
sions. For bimolecular elementary reactions of the formtween the result of Liret al. and ours is also analyzed.
A+A—0 it is well known that the critical dimension is 2, In Sec. Il we define the model and specify the parameters
below which the concentration of reactaftdecays, asymp- and boundary conditions. In Sec. Ill we apply an intuitive
totically, ast~%2. This nonclassical behavior is caused by theargument to obtain the number of distinct sites visited by a
anomalously large and continuously growing depletion zonesandom walker in a tubular geometry. Using the analytical
that are mesoscopic domains depleted of reacf@y® For results, we are able to explain the abnormal scaling of the
elementary reactions of the ford+B—0, the critical di- crossover time for the random-walk problem and the
mension is 4 and below that concentration of reactant decays+ A—0 reaction. In Sec. IV we employ different methods
ast~ %4 An even more dramatic nonclassical effect has beeito measure the scaling exponent of the crossover time for the
shown for the reactio+B—0 below dimension 4: Self- reactionA+B—0. Diffusion-reaction equations are used to
segregation betweeh andB appears for an initially random explain the result. Finally, in Sec. V we discuss the differ-
system[4-6]. ence between the result of Let al. and ours. In the Appen-
It can be seen that the nonclassical behavior is most oldixes we give the rigorous derivation of the formula obtained
vious in one dimension. While strictly one-dimensional reac-n Sec. lll.
tion systems are difficult to realize, it is much easier to
achieve systems that are effectively one dimension, for ex- Il MODEL
ample, capillaries, pores, or tubules. Recently Lin, Kopel-
man, and Argyraki$7] performed Monte Carlo simulations The method of simulation we employed is essentially the
of random-walk-based exploration volumes and bimoleculasame as that of Liet al.[7]. For clarity and consistency we
A+A—0 andA+B—0 reactions on a tubuldthey called it  briefly reiterate the procedure as follows: A population of
baguettelikglattice. Thed-dimensional tubular lattice has an reacting particles is initially deposited on a tubular lattice:
infinitely long geometry in ondlongitudina) direction and  The linear sizd. of the lattice in one directioflongitudina)
finite width W in the remainingd — 1 (transversgdirections.  is much larger than thaty) of the otherdtransversg Par-
They investigated the crossover time of the system froniicles move by hopping on the lattice and react when they
high- (two- or three} dimensional behavior to one- encounter each other. For thet A— 0 type reaction, if two
dimensional behavior and its scaling laws with respect to thé\ particles attempt to occupy the same lattice site they anni-
tube widthW. They found that these dimensional crossoverhilate each other. ThA+B—0 type reaction occurs when
times deviate significantly from a mean-square displacemeranA and aB particle attempt to occupy the same lattice site.
law and are specific to both dimensionality and reaction typeNo reaction happens if two same-species particles “collide”
Instead of being an expected power of 2, the exponents rangad therefore each lattice site can hold at most one particle.
between 1 and 4. Periodic boundary conditions are applied in both cases and
In this paper we analytically solved the random-walkthe densityp,(t) of reactantA is kept track of. For the
problem on the tubular lattice. Using a simple intuitive argu-random-walk problem one random walker is released at time
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t=0 from the origin andS;, the number of distinct sites (d=2)-dimensional behavior todE 1)-dimensional behav-
visited by the walker, is recorded. Here the linear size alongor is just the solution of/Int,~/t,\W or
the longitudinal direction is infinite and periodic boundary

conditions are applied along the transverse directions. In all \/E
three cases we are interested in the crossover time, defined as n \/t_NW’ 5
Cc

the point at which the system changes its behavior from that

in two or three dimensions to that in one dimension. . . . . .
which has no simple global scaling behavior. The scaling

exponent (2.6 0.4) observed in[7] is the property of the
local solution. Furthermore, for largé&/ and thus largd.,
Because of the translational invariance symmetry in thdnt. can be treated as constant comparet tand therefore
random-walk problem we can solve, using the generatingc approaches the classical scaling relationghipW?.
function techniqué8], the asymptotic behavior @&, on the
tubular lattice. We postpone the rigorous derivation until the  |v. CROSSOVER TIME OF A+A—0 AND A+B—0
Appendixes and instead present a much simpler point of o )
view here, which can be applied to the case of periodic [N diffusion-reaction systems, such as+A—0 or
boundary conditions along the transverse directions as weft+B—0, one is usually interested in the density of the re-
as that of reflective boundary conditions. actantsp (and/orpg). Thus, in such systems the crossover
We start from the well-known[8] fact that in one- time can be defined as the point at which the density changes
dimensional free space the number of distinct sites visited bifs Pehavior from that in two or three dimensions to that in
a random walker as a function of tinteis, asymptotically, =~ one dimension. Had the reaction process behaved classically,
the density, say,, would have followed the asymptotic
8t form po~t~1, which is independent of the spatial dimension
S\ T (1) the system embedded in and therefore there would have been
no crossover. For the reactioh+A—0 in free space, the

where o is the single-step dispersion. The walker spendgoncentration decay rate can be understood using the concept
approximatelyy/t time (we call it “idle” time ) visiting two of depletion zonél,g]:.As aflrst-order approximation, in the
consequenhewly visited sites. In the tubular lattice, if we @ré@ swept by a surviving particle up to tiethere is only

just concentrate on the longitudinal direction, say, by pro-°n€ particle, i.e., the surviving partl_cle. This argument gives
jecting the d-dimensional motion into that direction, the Pa()~1/S;, wherep,(t) is the density of particlé at time
number of distincayers visited by the walker isr8t/7, U Motivated by the result obtained in Sec. Ill, one would
with ¢2=1/2d+1/2d=1/d. During the “idle time” the 2&SSume that the density, of the reaction system
walker will just visit (almos} all the sites on the transverse A A—0 on the tubular lattice follows, asymptotically,
constrained hyperplanélyers because of the finite size of

Ill. CROSSOVER TIME OF S,

the h i i imula pat - WAL ®
yperplanes. This can also be confirmed by simulation A
results. Therefore, the number of distirgitesvisited by a )
random walker on the tube is, asymptotically, and the exponeng=d—1 as in the random-walk problem.
This argument explains the same scaling exponent of the
3t 8t crossover time for both the random-walk problem and the
SNG\EWdl: \ E\/\/dfl, (2 reactionA+A—0 [7].

Similarly, one would expect that the temporal behavior of
where W is the linear size of the tubular lattice along the Pa» for the reactiolA+B—0 andd<4, on the tubular lat-

transverse directions artithe embedding dimension. tice follows (assume initiallypp= pg)
It is also well known 8] that in two- or three-dimensional /4
free space the numbé& of distinct sites visited by a random -1__ t for small t @
walker as a function of time is, asymptotically, PA |\ WAtY4  for large t.
U sor d=2 The rate p,'~t% is the nonclassical(Ovchinnikov-
S~1 In(t) (3)  Zeldovich asymptotic behavior[4-6] of the reaction
t for d=3. A+B—0 ind-dimensional free space and therefore the early

time behavior in Eq(7) is true only in the sense of large

t. from (d=3)-dimensional behavior to d1)-  Vvery large a finite-size effect sets in before one can see the
dimensional behavior can be obtained by solving the equad-dimensional Ovchinnikov-Zeldovich rafg, *~t%. In real

tion t.~t.W2, which gives the scaling relationship be- Simulations there is also another finite-size effect, namely,
tweent, andW, along the longitudinal direction. Since the size along the lon-

gitudinal direction is set large enough in the simulation, the
te~ WA (4  one-dimensional behavior can be observed before the longi-
tudinal finite size has an effect.
The scaling power 4 agrees with the simulation result ob- The crossover of the reactioA+B—0 occurs at the
tained in [7]. Similarly, the crossover timet, from  point
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FIG. 1. Concentration(t) *—py* for the reactionA+B—0
on d=2 tubular lattices. The initial concentration gg=0.4. The
width W is, from bottom to top, 2, 4, 8, 16, 32, and 64.
L =100 000 and the run is equal to 15.

FIG. 3. Data collapse of concentration for the reaction
A+B—0 on d=2 tubular lattices. The initial concentration is
po=0.4. The widthW is from 2 to 128. The parameters are de-
scribed in the caption of Fig. 1.

did__y\p By LI4
te ~Wi™, ® where f (x) ~const wherx is small andf(x)~x~#/* when
which turns out to bé.~W¢. where x is large. Data collapse fat=2 (Fig. 3) andd=3 (Fig. 4
¢ ' verifies the above scaling conjecture. The failure of data col-
48 lapse at early times is due to the existence of the classic
=g (9) region at the very beginning of the reaction.

The behavior oft, can be understood by studying the
. spatial correlation function of the concentration difference
For the reactionA+B—0 the exponeniB cannot be ob- S - ~ b v sh h
tained by the previous depletion zone argument becaus"é([’t)zi[pA(r’t)_pB(r't)]' It can be easily shown that

there is no reaction between same species particles. We mea(t,t) obeys the diffusion equatiofil]. Thus, for random

sured the power exponeptfrom the simulation data, which initial conditions[12] the spatial correlation g evolves as
turns out to beB~0.5 for d=2 (Fig. 1) and 8~1 for

d=3 (Fig. 2, respectively. Therefore, we predict a universal

- - 1 L,

~ —(rq—ro)“/4Dt
scaling result.~W? for largeW. Furthermore, from Eq(7) (r(r,0¥(r2,0) 2(877Dt)a72e crL 1Y
we can propose a scaling thedi] of p, for the reaction
A+B—0:

The above formula implies that the size of the self-

1 da o segregation zone grows &2 We argue that the crossover

pa ~ (W), (10 time t. on the tubular lattice happens when the self-
segregation size reaches the widlth
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FIG. 2. Concentratiorp(t)‘l—pal for the reactionA+B—0

on d=3 tubular lattices. The initial concentration gg=0.4. The FIG. 4. Data collapse of concentration for the reaction

width W is, from bottom to top, 3, 6, 9, 12, 15, 18, 21, 24, 27, andA+B—0 ond= 3 tubular lattices. The parameters are described in
30.L=10 000 and the run is equal to 15. the caption of Fig. 2.
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The discrepancy between our result and thd7icomes  walker in free space. Let us first defipg(j), the probability
from the different method employed to determine the CroSSiat the walker reaches sifeat stepn, andfn(f), the prob-

over timet,. In [7] the crossover timé, is obtained for the N s .
A+B—0 process by drawing “best” linear fits to both the ablllty that the walker reaches sifeat stepn for the first

early timeand the asymptotic time. However, for sms¥
the early time decay of reactants weakly depend®vo his
transient behavior is due to the finite size of the system: |
Ref.[7] the survival probabilityp./py vs W is plotted, where n

p. is the density ofA particles remaining on the lattice at the pa() = Sn 0056+ > (i) pa_k(0). (A1)
crossover timeé.. Compared with another survival probabil- k=1

ity pg/ po, Namely, the normalized densitiestat wheret, is
the crossover time to the Ovchinnikov-Zeldovich time re-
gime in free space, it is found that, fav<10, the finite-size %
effect sets in before one can observe the Ovchinnikov- p(ii2)=> pa()Z", (A2)
Zeldovich behavior. This can also be confirmed by the data n=0
collapse: The flat portion of the scaling functid(x) ap-
pears only whew is large enough.

Therefore, our scaling exponent is different from that in
[7] because of the different definition of crossover time. In
[7] the crossover time is actually the time at which the sys+yith fo(f):() implied, and it is easy to see that
tem enters the one-dimensional Ovchinnikov-Zeldovich be-

From the translational invariance property of the free
;shace we have

Furthermore, we introduce generating functions

f(F;z>=n§0 fo()2", (A3)

havior regime. For largdV this definition approaches ours. . p(f;z) 1

However, the validity of scaling formulér) in the long time f(,2)= —=———=—6j5- (A4)
regime still holds and actually can be ugdd] to interpret p(0:2)  p(0:2)

the anomalous scaling exponent i if the early (for small The probability that the walker reachesmiawsite at step

W) scaling behavior is carefully measured.

In three-dimensional free space it is difficult to observe
the Ovchinnikov-Zeldovich decay *~t** for reaction .
A+B. Recent study14] shows that periodic boundary con- An= 2 fn(j) (A5)
ditions act as effective convection currents, especially in
three dimensions, and thus hinder the system’s transition tand therefores,, the number of distinct sites visited by the
the Ovchinnikov-Zeldovich regime. Using instead reflectivewalker, can be expressed as
boundary conditions improves this situation. However, in our
method it can be seen that the measurement of the crossover "
time does not involve the high-dimensional Ovchinnikov- Sn:Z Ay.

Zeldovich regime. We also tried the reflective boundary con- k=1

n, denoted ag\,,, is

V. CONCLUSIONS AND SUMMARY A(z)=

In summary, we analytically solved the random-walk (1-2)p(0;2)
problem on tubular lattices and thus obtained an understand- d
ing of the scaling behavior of the crossover time for the@"
reaction A+ A—0. Applying data collapse technique we
found, for largeW, a normal scaling exponent of the cross- S(z2)= ————.
over time for the reactiod+ B—0 on tubular lattices. The (1—2)2p(0;z)

discrepancy of our result with those of others is analyzed. ) ] .
The asymptotic behavior @&, can be related, via the Taub-

erian theoreni16], to the singularity ofS(z) atz=1.

(A6)
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. ; - s ticing that thed-dimensional tubular lattice is infinitely

B. G. Orr f ful .Th t otic! a-cir ) . i

NSIE GOrrE;n;):\Il:)s.eDL;/lthsgciszs(;gg; 's project is supported bX)Iz)lng in one &) direction and of widthw in the remaining

directions §), we definep,(x,y) as the probability that the
walker reaches site x(y) at step n. Here y is in
(d—1)-dimensional subspace where periodic conditions

In this section we briefly revieW8,15] the technique to  with periodW are implied. Since translational invariance still
obtain S,, the number of distinct sites visited by a random holds in this tubular geometry, we have

APPENDIX A: HOW TO SOLVE S, IN FREE SPACE
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Poii(xy)= > px—x,y—y)ps(xy), (Bl

X'y}
wherep(x,)7) is the single-step jump probability andruns

over all the integer numbers whilgy’} runs over all the
lattice sites in ad—1 cube of widthW. A Fourier transform

can be used to solve,(X,y):
P(0.5)=, p(x.y)e!(?*2ms W) (82)
x{y}
or
v 1 (™ o itk 2ms W)
PXY)=a12 5| P(o.s)e . (B3)

-T

x{y}
It can be easily shown that
Pn(6,5)=[p(6,5)]"

if the random walker is released from the origin. The
6(0,5) for our tubular geometry is

(B4)

~ -1
p(6,s)= a[cos9+ cog2ms; /W) + - - - +cog2mSy_1/W)].
(BS)

JI LI

The relationshigA6) betweenS(z) andp(x,y;z) still holds
for the tubular geometry and

m

1 de

2 1 2
p(OyO.Z)—Wf—la _Wmﬂ-

{s}

Singularity happens only whers;=s,=-.-=s4_,=0.
Therefore,
0,0,z—0)= ! ! i
p(0,0,2-0)= =1 _.1-z(co9+d—1)/d 27
(B6)
1 (= 1 de B7
TWITT) L (1-z+26%2d) 2 B7)
d (= 1 de
= vd (B8)

WI—T) . (1—z+20%2) 27"

The integrand in the identityB8) can be recognized as that
of the random walk in one-dimensional free space and thus

we get
wi-1  /8n
@V

Sn~ (B9)
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